
ORIGINAL PAPER

Reliability models for electrochemical processes: some
applications of the Weibull and Rayleigh probability distributions

Thomas Z. Fahidy

Received: 26 April 2008 / Accepted: 1 October 2008 / Published online: 24 October 2008

� Springer Science+Business Media B.V. 2008

Abstract The potential usefulness of two important tools

of reliability analysis: the Weibull and the Rayleigh dis-

tribution, is illustrated for three electrochemical processes,

via cathode- and anode-failure, and deviations of alloy

composition from target values. The examples show that

(incorrectly assumed) normal and T-distribution can lead to

serious numerical errors in estimating survival times.
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List of symbols

cdf Cumulative distribution function

D Kolmogorov–Smirnov–Lilliefors statistic

E Expectation (expected value) of a random

variable

f(t) pdf of the random variable T

F(t) cdf of the random variable T

fR(t) pdf of the Rayleigh distribution of T

FR(t) cdf of the Rayleigh distribution of T

FR(w) cdf of the Rayleigh distribution of W

FN(z) cdf of the standardized normal variate Z

F(v2;T; 2) cdf of the chi-square distribution of T,

with degree of freedom 2

h(t) Failure rate function (or hazard rate function)

i Position index

pdf Probability density function

RA Reliability analysis

r Correlation coefficient

SL Significance level

T Random survival time; symbol for

(Student’s) T-distribution

t Numerical value of the random variable

survival time T

u ‘‘Dummy’’ integration variable

w Numerical value of the random variable

deviation norm W

W Random variable deviation norm

X, Y Independent random normal variables;

x, y their numerical values, respectively

Z Random standardized normal variable;

z its numerical value

Greek letters

a, b, c, h Parameters of the Weibull and the Rayleigh

distributions

g, r Standard deviation of a Rayleigh distribution

l The mean (or expectation) of a Weibull or

Rayleigh distribution

v2 Random chi-square distribution variable

1 Introduction

Reliability can be defined as the probability that ‘‘... an entity

will survive fully functional throughout a particular time-

span ...’’ [1]. An entity may be a product, a process, a system,

a subsystem of a complex structure, or any item serving a

specific purpose or utility. Reliability analysis (RA) is at the

core of system design and evaluation, and as such, it is an

essential component of modern engineering. Time to failure

(or simply, failure time), mean time between failures, and

risk assessment are major concepts in RA.

There is at present, at least to the author’s knowledge,

little if any exploration of the utility of this subject area in

the electrochemical engineering literature. The purpose of
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this paper, stemming from this paucity, is to provide an

introductory treatment of certain electrochemically ori-

ented reliability scenarios. Since pertinent quantitative

information is not readily available, the numerical illus-

trations in Sect. 3 are based on hypothetical situations,

which nonetheless indicate the nature of observations

necessary for an (at least) adequate potential utilization of

RA in the electrochemical domain.

2 Basic theory

As in any probabilistic approach, the fundamental tools of

analysis are the probability density function (pdf) f(t), and

the cumulative distribution function (cdf) F(t) of failure

time T, a continuous random variable. The relationship

FðtÞ ¼
Z t

0

f ðuÞdu ð1Þ

defines the probability P{T B t}, where t is an a-priori

arbitrary time instant (from elementary probability theory,

P{T B t} = P{T \ t}, inasmuch as the probability

P{T = t} = 0, due to the continuous nature of failure

time). The complementary probability

PfT [ tg ¼ 1� FðtÞ ð2Þ

known as the reliability function, or the survival function,

yields the probability that an item survives past failure time

T = t. The significance of the failure rate function (or

hazard rate function), defined as

hðtÞ ¼ f ðtÞ
1� FðtÞ ð3Þ

is manifested by h(t)dt, which is the approximate proba-

bility of failure in the (t, t ? dt) interval, if it is known

that an item has survived up to time t.

2.1 The Weibull distribution

Introduced nearly 70 years ago by a Swedish physicist

whose name it is now bearing, the Weibull distribution has

become a cornerstone tool of reliability analysis. Table 1

presents five differing pdf forms, where the unfortunate

interchange of the a, b parameters requires close attention.

Definition 5 readily indicates that the transformed variable

Y � Tc has the simple exponential distribution, with cdf

FWðyÞ ¼ PfY � yg ¼ PfTc� yg ¼ PfT � y1=cg
¼ FWfy1=cg ¼ 1� exp �y1=c c

h

� �h i

¼ 1� exp � y

h

h i
ð4Þ

and yields the simple version of Eq. 3

hðtÞ ¼ c
h

tc�1 ð5Þ

indicating that the course of h(t) depends on the numerical

value of the (c - 1) exponent.

2.2 The Rayleigh distribution [2, 10]

Setting a = 2 and b ¼ p2g in Definition 3 of Table 1, the

Rayleigh distribution functions

fRðtÞ ¼ g�2t exp � 1

2

t

g

� �2
( )

ð6Þ

and

FRðtÞ ¼ 1� exp � 1

2

t

g

� �2
( )

ð7Þ

are obtained [11]. They were shown to be useful e.g. in

software reliability [12], artillery communication theory

[13, 14], and in the study of errors related to independently

acting (transversal) accelerometers [11]. The latter

application stems from a remarkable property of the

distribution: if X and Y are independent normal random

variables with zero mean and standard deviation r, then

their Euclidean norm (i.e. ‘‘radius’’)
pðX2 þ Y2Þ possesses

a Rayleigh distribution with g = r and cdf

FRðwÞ ¼ 1� exp � 1

2

w

g

� �2
( )

ð8Þ

This relationship arises from the normal joint distribution

function

f ðx; yÞ ¼ 1

2pr2
expf�ðx2 þ y2Þ=2r2g ð9Þ

upon an appropriate polar transformation [15]. Various

properties of the Rayleigh distribution are also available on

the Internet, e.g. [16, 17].

3 Potential applications to electrochemical processes

3.1 Weibull model-based analysis of failure time in a

cathodic deposition process

A frequent shortcoming of steel cathodes used in certain

chlor-alkali cells is an increase in their surface area,

Table 1 Typical expressions for the probability density function of

the Weibull distribution [for t \ 0, f(t) = 0]

Definition index f(t) Reference

1 b
a ð

t�c
a Þ

b�1
expð�ðt�c

a Þ
bÞ [2]

2 abtb�1expð�atbÞ [3, 4]

3 ab�ata�1expð�ð t
bÞ

aÞ [5–7]

4 btb�1g�bexpð�ð tgÞ
bÞ [8]

5 ch�1tc�1expð� tc

hÞ [9]
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leading to lower hydrogen overvoltage, hence a reduction

in current efficiency [18, 19]. It is assumed that failure

times in steel cathodes (claimed improved by a manufac-

turer), and due to mutually independent technical reasons,

have been monitored in an experimental chlor-alkali cell.

The 15 observations normalized with respect to an arbitrary

reference time instant are in increasing order: 0.43; 0.51;

0.64; 0.72; 0.91; 0.98; 1.12; 1.19; 1.21; 1.22; 1.62; 1.72;

1.81; 2.32; 2.65

First, the validity of a Weibull model is established [20]

by the Yi � ln (16/(16-i)) versus Xi � ln(ti) plot in Fig. 1,

with correlation coefficient r � 0.98. The parameters of the

distribution are then estimated by solving simultaneously

the relationships [21] pertaining to Definition 2 of Table 1:
P15

i¼1 tbi lnðtiÞP15
i¼1 tbi

� 1

b
�
P15

i¼1 lnðtiÞ
15

¼ 0 ð10Þ

and

a ¼ 15P15
i¼1 tbi

ð11Þ

for the pdf (repeated here for convenience)

fRðtÞ ¼ abtb�1expð�atbÞ ð12Þ

Accepting 0.007 as essentially zero on the right hand side

of Eq. 10, the resulting parameter values a = 0.4463 and

b = 2.2 yield the cdf

FRðtÞ ¼ 1� expð�0:4463t2:2Þ ð13Þ

i.e. the probability that a deposition process would not fail

within a dimensionless operation time period 0 B T B t).

The sample mean 1.27 and sample variance 0.4182 provide

an unbiased estimate [22] of the population mean

l ¼ a�1=bC 1þ 1

b

� �
¼ 1:278 ð14Þ

and population variance

r2 ¼ a�2=b C 1þ 2

b

� �
� C 1þ 1

b

� �� �2
( )

¼ 0:377 ð15Þ

3.2 Rayleigh model-based analysis of anode survival

times

Magnetite anodes with closely controlled equi-molar ratios

of the FeO and Fe2O3 species have been shown to possess

good stability in dilute chloride electrolytes containing

alkali metals, and in chlorate cells [23, 24]. In a novel, but

still experimental chlorate cell, nine magnetite anodes are

assumed to have exhibited the following normalized sur-

vival times, in increasing order: 0.62; 0.74; 0.94; 1.07;

1.25; 1.41; 1.68; 1.82; 2.17. As in Sect. 3.1, the failures are

mutually independent, and the manufacturing and the

operating conditions of the anodes in the available stock

have been closely controlled. Fig. 2, established by the

procedure shown in Sect. 3.1, indicates that the Weibull

model with r � 0.99 is acceptable, yielding the cdf

FRðtÞ ¼ 1� expð�t2=2Þ ð16Þ

The results can, therefore, be interpreted in terms of a

Rayleigh distribution, where the sample-based maximum

likelihood [25] estimate of the variance

b2 ¼
P9

i¼1 t2
i

2n
¼ 17:3548

18
¼ 0:9641 ð17Þ

indicates that the adoption of g = 1 (instead of b = 0.9819)

is quite reasonable. Since a Rayleigh distribution with g = 1

is equivalent to a chi-square distribution with degree of

freedom m = 2 [10], the probability of survival time to T = t

can also be computed from tables of the v2-distribution

Fig. 1 Graphical test for the validity of the Weibull distribution in

Sect. 3.1

Fig. 2 Graphical test for the validity of the Weibull distribution

(Rayleigh version) in Sect. 3.2
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function [26] F(v2; t2; 2). The sample mean of 1.3 and the

sample variance of 0.2681 provide an unbiased estimate [10]

of the population mean

l ¼
ffiffiffiffiffiffiffiffi
p=2

p
¼ 1:253 ð18Þ

and population variance

r2 ¼ 4� p
2
¼ 0:429 ð19Þ

3.3 Rayleigh model-based analysis of electrodeposited

alloy composition

The electrolytic deposition of Ni–Fe alloys has been the

subject of intensive research for several decades. Relatively

recent studies involving NiSO4/FeSO4 and NiSO4/FeSO4/

H3BO3 electrolytes in RDE systems [27, 28] provide

electrokinetic parameters(transfer coefficient and surface

rate constant) for the direct Ni(II) ? Ni and Fe(II) ? Fe

reduction reactions. Magnetic field imposition has been

shown [29] to increase the Fe content of the alloy deposited

from a modified Watt’s bath. A conventional target com-

position [30] of 80% Ni–20% Fe, to be achieved in a cell of

this kind, is specified to illustrate the usefulness of the

Rayleigh distribution. The analysis concerns the two-

dimensional composition state vector (x; y) comprised of

deviations from the target values [Ni] = 80% and

[Fe] = 20%, respectively. The norm of the state vector

w ¼ px2 þ y2 is a Rayleigh variate if the vector elements x

and y are normally distributed, and independent with zero

mean and standard deviation g (Sect. 2.2). The geometric

interpretation considers the vector norm as the radius of the

circle with centre at (0,0), where x = 0 corresponds to 80%

Ni and y = 0 corresponds to 20% Fe. (From a purely set-

theoretic point of view, w is also the square root of the

inner product of vector elements x and y).

It is assumed that 10 randomly selected alloy deposit

samples yield the following observations arranged in

increasing order:

X: {-2.47; -0.88; -0.58; -0.021; 0.028; 0.19; 0.63;

0.83; 0.93; 1.43}; mean = 0.087; variance = 1.2493

Y: {-2.23; -1.41; -0.43; -0.20; -0.10; 0.62; 0.62;

0.94; 1.02; 1.18}; mean = 0.001; variance = 1.2535

In order to ascertain whether the two distributions can be

considered to be normal, the Lilliefors modification of the

Kolmogorov–Smirnov test [31–33], described briefly in the

Appendix, is employed. Since the magnitudes of

Dmax = 0.1267 for the X-set, and 0.147 for the Y-set are

well below the 5% critical value of 0.258, the test fails to

reject the a-priori (or null) hypothesis of normal distribu-

tion, hence the Rayleigh-model is admissible. Accordingly,

the numerical form of Eq. 8

FRðwÞ ffi 1� exp � 1

2

w

1:12

� �2
� �

¼ 1� expð�0:4w2Þ

ð20Þ

yields P[W B w], i.e. the probability that the deviation

norm will not exceed the value w, where W is the random

deviation-norm variable. With g = 1.12 (i.e. by rounding

the two nearly equal standard deviations
p

1:2493 ¼
1:1177 and

p
1:2535 ¼ 1:1195Þ; the population mean and

standard deviation are computed [33] to be

lw ¼ g

ffiffiffi
p
2

r
¼ 1:404

rw ¼ g

ffiffiffiffiffiffiffiffiffiffiffi
4� p

2

r
¼ 0:733

respectively.

4 Analysis of results and discussion

Process analysts are frequently interested in the fraction of

observations that may be expected to fall between the

population mean plus k-times the standard deviation, where

k is an integer, typically from -4 to ?4. For cathode

survival in Sect. 3.1, comparison of the Weibull, the

standard normal and the approximately normal T-distribu-

tion in Table 2 demonstrates that the latter two (if used by

oversight, or by ignorance of Weibull distribution theory)

would yield discernibly different estimates. If only cath-

odes exhibiting survival times larger than the reference

time were declared acceptable, all three models would

predict essentially the same fraction (Weibull: 0.64; Z and

T: 0.66) of such cathodes. Similar conclusions may be

drawn from Table 3 for rejection of cathodes with survival

times below the reference time.

In the anode survival case (Sect. 3.2) the in principle

erroneous application of Z- and/or T-distribution would

Table 2 Estimates of the fraction of cathode survival times in Sect.

3.1 via the Weibull, standard normal, and the T-distribution

Interval Fraction of estimated survival times

Weibulla Normalb Tc

(l – r) – (l ? r) 0.6467 0.6826 0.6658

(l – 2r)d – (l ? 2r) 0.9467 0.9544 0.9348

a lW = 1.278; rW
2 = 0.377

b The sample mean 1.27 and sample variance 0.4182, unbiased

estimates of the population mean and variance, respectively, were

used to compute the Z- and T-scores
c Computed via T-distribution tables [34] with fmg = 14 degrees of

freedom
d Set to zero, as a reasonable approximation to 1.27-2

p
0.4182 = -

0.0234
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yield larger numerical discrepancies, as seen in Tables 4

and 5. The small disagreements shown by the chi-square

estimates with respect to the Rayleigh distribution are due

to linear interpolation between tabulated values of the chi-

square cdf [26].

The failure rate functions

hðtÞ ¼ 0:982t1:2 ð21Þ

for cathode survival, and

hðtÞ ¼ t ð22Þ

for anode survival portray the tendency of the differential

probability to increase with the length of survival time. The

linearity of the survival function with respect to time,

obtained by substituting Eqs. 6 and 7 into Eq. 3, is a dis-

tinct characteristic of the Rayleigh distribution.

The importance of using the right distribution hinges on

the severity of acceptance. If, for instance, up to one quarter

of the experimental cathodes were allowed to have a less than

0.9 dimensionless survival time, the Weibull distribution in

Table 3 would indicate to the analyst that some modifica-

tions in cathode preparation would be warranted, since the

expected fraction of 0.248 is very close to the stipulated

value of 1/4. The Z- and T-distribution, however, would fail

to question the properness of the cathode preparation pro-

cess. Similarly, if at least 35% of the anodes were stipulated

to possess a dimensionless survival time 1.5 or larger, the

Rayleigh (and chi-square) distribution in Table 5 would

indicate a defective anode behaviour on the whole, but the Z-

and T-distribution would make the erroneous impression that

the anodes are acceptable.

The cdf of the Rayleigh distribution in Sect. 3.3 (Eq. 20)

provides the probability of a specified deviation from target

composition, when it is immaterial for the process analyst to

what extent the stated deviation magnitude is made up by the

two metals. In other words, the individual magnitudes of x

and y are of no specific interest as long as w =
p

x2 ? y2

remains a specified constant. If, on the other hand, the analyst

is interested in the probability of individual deviations, joint

probability distributions are needed for analysis. In the

illustration of Sect. 3.3, the probability e.g. that deviations

from target composition will not exceed x1% Ni and y1% Fe

in magnitude, is given by

P½0�X� x1; 0� Y � y1�

¼ 1ffiffiffiffiffiffi
2p
p

Z x1=1:12

0

expð�u2Þdu

( )

� 1ffiffiffiffiffiffi
2p
p

Z y1=1:12

0

expð�u2Þdu

( )

¼ FN
x1

1:12

� �
� 1

2

� �
FN

y1

1:12

� �
� 1

2

� �
ð23Þ

with the standard normal cdf

FNðzÞ ¼
1ffiffiffiffiffiffi
2p
p

Z z

�1
exp � u2

2

� �
du ð24Þ

Table 6 shows clearly that the Rayleigh distribution-based

probabilities are considerably larger than the joint normal

distribution-based probabilities, inasmuch as a given

numerical value of w = w1 encompasses all x and y values

obeying the w1 ¼
p

x2 þ y2 relationship.

At very small survival times, the Weibull and the Ray-

leigh cdf’s can be approximated at a reasonable accuracy

by the positive argument of their exponential functions.

Thus, Eqs. 13 and 20 can be replaced by

FRðtÞ ffi 0:4463t2:2; �0:35� t� 0:35 ð25Þ

and

Table 3 Estimates of the fraction of rejected cathodes in Sect. 3.1

via the Weibull, standard normal, and T-distribution

Dimensionless

survival time

Expected fraction of rejected cathodes

Weibull Normal Ta

B0.5 0.110 0.117 0.127

B0.7 0.196 0.189 0.197

B0.9 0.248 0.233 0.239

a Computed via T-distribution tables [34] with m = 14 degrees of

freedom

Table 4 Estimates of the fraction of anode survival times in Sect. 3.2

via the Rayleigh, the chi-square, the normal, and the T-distribution

Interval Fraction of estimated survival times

Rayleigha Chi-squareb Normalc Td

(l – r) – (l ? r) 0.5448 0.5452 0.6826 0.6564

(l – 2r) – (l ? 2r) 0.9002 0.9005 0.9544 0.9194

a lR = 1.2533; rR
2 = 0.4392

b Computed via chi-square distribution tables [21] with m = 2 degrees

of freedom
c The sample mean 1.3 and sample variance 0.2681, unbiased esti-

mators of the population mean and population variance, respectively,

were used to compute the Z- and T-scores
d Computed via T-distribution function tables [34] with m = 8 degrees

of freedom

Table 5 Estimates of the fraction of acceptable anodes in Sect. 3.2

via the Rayleigh, the chi-square, the normal, and the T-distribution

Dimensionless

survival time

Expected fraction of acceptable anodes

Rayleigh Chi-

square

Normal T

C1.0 0.6065 0.6065 0.6517 0.6466

C1.5 0.3246 0.3248 0.3520 0.3671

C2.0 0.1353 0.1353 0.1271 0.1439
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FRðwÞ ffi 0:4w2; �0:35�w� 0:35 ð26Þ

respectively, at a relative error smaller than about -2%.

Finally, Eqs. 16 and 20 imply that a Rayleigh distribu-

tion can also be considered as an exponential distribution

with variates t2 and w2 , and with parameters 2 and 0.4,

respectively, as a special case of Eq. 4.

5 Final remarks

In a world increasingly conscious of environmental issues

and conservation, the design and operation of equipment

with large survival times will be a challenging goal for new

and modified electrochemical technologies. The techniques

of applied probability theory presented here will be among

the important tools for motivated electrochemists and

electrochemical engineers.

Survival function analysis is not limited to random

variables with known probability distributions. Discussion

of appropriate methods (e.g. the Kaplan–Meier technique

[35]) of nonparametric statistics for estimating survival

times is, however, beyond the scope of this paper.

Appendix

A brief summary of the Lilliefors test for normality

Let the set x1, x2, ..., xn be a sample of random observations

taken from a population with unknown mean and variance,

arranged in increasing order, with sample mean �x and

sample variance s2. From the set of absolute values of the

difference variable

Di ¼ FN
xi � �xffiffiffiffi

s2
p

� �
� i

n
ðA:1Þ

the largest value Dij jmax is compared to tabulated critical

values [31, 32, 36] at various significance levels a (5%:

significant level; 1%: highly significant level). If at a

chosen significance level Dij jmax is less than the critical

value, normality of the data may be assumed.

For the observation sets in Sect. 3.3, the critical values

at n = 10 are: 0.215 (SL = 20%); 0.224 (15%); 0.239

(10%); 0.258 (5%), and 0.294 (1%). For n [30, the critical

value is C/
p

n; where the constant C is determined by the

chosen SL.

The Lilliefors test is a modification of the Kolmogorov–

Smirnov test, the latter applicable in exactly the same

manner when the population mean and population variance

are known. The critical values, however, are different in

the two tests [if in Sect. 3.3 the mean and variance were

population parameters, the K–S critical values to use would

be 0.266 (SL = 20%); 0.283 (15%); 0.304 (10%); 0.338

(5%); 0.404 (1%)].
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